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Jacobian Calculation Using the Multidimensional
Fast Fourier Transform in the Harmonic Balance
Analysis of Nonlinear Circuits

PATRICK L. HERON anp MICHAEL B. STEER, MEMBER, TEEE

Abstract — A technique is developed whereby the gradient of frequency-
domain simulation variables may be analytically determined using time-
domain derivative information and the multidimensional fast Fourier trans-
form. It is shown that this technique can be efficiently implemented when a
circuit is driven by any number of incommensurate input frequencies. A
harmonic balance simulator is constructed which uses this technique to
determine the entries of the Jacobian matrix which are needed in a
quasi-Newton iteration scheme. A significant reduction of simulation time
is observed when compared with a harmonic balance simulator that uses
matrix-multiplication-based transforms.

1. INTRODUCTION

In the harmonic balance method of nonlinear analog circuit
simulation, the linear subcircuit is analyzed in the frequency
domain and the nonlinear subcircuit in the time domain. For
simulations with multifrequency excitation, the time-domain and
frequency-domain analyses have been interfaced using either the
almost periodic discrete Fourier transform (APDFT) method [1],
[2] or the multidimensional fast Fourier transform (NFFT)
method [3]. The advantage of the APDFT is that computer
implementation is relatively simple for an arbitrary number of
incommensurate input frequencies. On the other hand the NFFT
algorithm is computationally more efficient and exhibits superior
numerical stability. An alternative method to that used by Rizzoli
et al. [3] is presented here in which the Jacobian is calculated
using the NFFT. This method has the advantage that frequency-
domain derivatives may be computed for every frequency con-
tained in the transform. It can also be used in conjunction with
the block Newton iteration scheme [4].

II. HARMONIC BALANCE

Harmonic balance analysis proceeds by first selecting a set of
frequency-domain analysis variables at every edge /node which is
common to both the linear and nonlinear portions of the circuit.
The frequency-domain independent variable is X, and for
impedance (admittance) type elements X is a set of current
(voltage) phasors, while the dependent variable, Y, is a set of
voltage (current) phasors. Lowercase variables will be used to
indicate time-domain quantities.
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The independent and dependent variables at a single node or
edge will be denoted by the subscript ». Absence of this subscript
will indicate the collection of all independent or dependent
variables in the simulation. For example, X, represents the
frequency-domain independent variable containing all analysis
frequencies at the nth node/edge, and y is the collection of the
time-domain dependent variables at every node/edge and sample
time.

The objective of the harmonic balance procedure is to “bal-
ance” the response of the nonlinear elements (Y) to that of the
linear elements (¥). Defining the forward and inverse transform
operators as % and F~! respectively, the “balance point” is
determined iteratively as follows. During each iteration and at
each analysis node/edge an updated estimate of X, is inverse
Fourier transformed into the time domain,

xn = ‘gﬁl(Xﬂ)

ey
and applied as input to the constitutive relations of a nonlinear

element. This yields the time-domain response (y,) for the
present iterate of the dependent variable:

-V)I=h(x")' (2)
This is then Fourier transformed to the frequency domain,
Y, =F(y) (3)

and compared with the response of the linear circuit to generate
the error function E, E = ||E|| where E=[E, ,1=[Y, ,— ¥, I
the subscript k denotes the frequencies and » the edges /nodes of
elements E, , of the matrix E.

The error function is minimized by iteratively selecting better
estimates for all independent variables. Generally, methods using
first derivative information, known as quasi-Newton methods,
are preferred. For each iteration the updated version of all
independent variables is calculated using

1+1X=1X_(1J71)(1E) (4)
where the leading superscript is the iteration index and J=

"(JE/8X) is the Jacobian matrix or an approximation to the
Jacobian matrix.

III. NFFT

The harmonic balance algorithm can be generalized to signals
having N incommensurate input frequencies by using a multidi-
mensional Fourier transform. The operations in (1) and (3) then
become ’

1 Mi—1M—1 My —1

xm.n'___ Z Z o Z Xk,n

IM| (20 k=0 ky=0

2o [ k, k, ky
exp —— ﬁlml-l-ﬁzmz’*‘ +—M]\—1mN (5)

and

My—1 M,—1 My —1
Yvk,n Z Z Z ym n

my =0 my = my =

[ m my My
~exp2 jm Vkl—%Er—kz-f- "'+VkN (6)
1 2 N

where |M|=1I"|M,| and the subscripts k and m are multi-
indices which represent [k, k, - - - k] and [m;m, - - - m] respec-
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tively. The operations in (5) and (6) are most efficiently im-
plemented using an NFFT. In this algorithm, the complex
frequency-domain coefficients, X, , and Y, ,, may be thought of
as belonging to an N-dimensional frequency space (elements of
an N-dimensional matrix). Each dimension in this space corre-
sponds to a particular input frequency. The frequency-domain
coefficient indexed by k corresponds to the amplitude of a
phasor having frequency w, =wik; + -+ + wyky. The phase
factors 2am, k, /M, come from the product w7, , where w; =
w,k, and the discrete evaluation times are 7, =27m,/w, To
satisfy the Nyquist sampling criterion we let the k th index
reference frequencies up to the (M,/2—1)th harmonic of w,
(coefficients for negative, Nyquist, and dc frequencies account
for the other M, /2+1 terms). Similarly the time-domain coeffi-
cients x,, and y, can be viewed as elements of a multidimen-
sional sample matrix and the phase associated with harmonics of
the w,th input frequency varying as we traverse the matrix along
the ith dimension (i.e., as the index m, increases the phase
associated with the w,th frequency advances).

We thus have a multidimensional time space and the signals y,
and x, cannot be related to any real physical signal. The time-
domain constitutive relationships of nonlinear elements are con-
strained to be algebraic, i.e., have no memory, due to the absence
of an identifiable sequence of time samples. This is not a restric-
tion, as Newton-based harmonic balance simulators generally
require that constitutive relations be algebraic. Nonlinear induc-
tors, capacitors, and other elements having constitutive relations
involving derivatives with respect to time are handled through
multiplication by an appropriate power of jw in the frequency
domain.

In the remainder of this paper we shall consider the data to be
arranged in matrices. An example of the notation which will be
used is

_3&“3[3&
dx ax |,

m.n

The left side of the equation states that we are taking the partial
derivative of the matrix of the time-domain dependent variable
( y) at all sample instants with respect to the dependent variable
at one particular sample instant (x,, ). Here boldface type and the
absence of a subscript indicate a vector or matrix quantity with
the index varying throughout the range of the (suppressed) sub-
script. Lightface type and the presence of a subscript indicate
that we are selecting one particular scalar value. When differenti-
ation is performed, the node index » indicates that we are
performing this operation at one particular node/edge of the
dependent variable and one particular node /edge of the indepen-
dent variable. The node/edge in each case may be different but
we will use the same # in each case to avoid additional complex-
ity. On the right side of the previous equation, the square
brackets indicate a matrix, each element of which is indicated by
the enclosed quantity. In this example, matrix elements are
indexed by the subscript p and derivatives are taken with respect
to the independent variable at a single sample instant. When
subscripts are present inside the brackets they are free to vary
over their range; absence of a subscript indicates a single fixed
element. Note that the subscript convention for variables outside
brackets is the opposite to that used for matrix elements.

IV. JACOBIAN CALCULATION

The harmonic balance procedure requires determination of the
frequency-domain derivatives d¥/dX. These can be calculated
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from the time-domain derivatives

et = 2] <[]

ax,, ax,,

(7

which are available from the nonlinear device time-domain con-
stitutive relations. We may express (7) as

8= [Spm gpm] n (8)

where §,, is the Kronecker delta. A consequence of algebraic
time-domain constitutive relationships is that an element g,,, =0
if p # m. Here we develop a procedure for calculating the fre-
quency-domain derivatives from the time-domain derivatives
when an NFFT is used to accomplish transformation. Difficulties
arise because of the multidimensional nature of the data and the
fact that the transform is accomplished by a linear operator
rather than through multiplication by a matrix.

From (6) we see that each frequency-domain coefficient Y, , is
a function of all time-domain samples, the y,, ,’s. Similarly, from
(5), we see that each time-domain sample x,, , is a function of all
frequency domain coefficients, the X ,’s. This indicates that the
transform should operate on the coefficients as if they were a
vector rather than an N-dimensional matrix (as implied by the
multiple indices). Thus the collection of all frequency-domain or
time-domain coefficients will be treated here as a vector. This will
be indicated by a hat (») above the frequency- or time-domain
coefficient. For example, %, represents a vector containing all the
instantaneous coefficients, x,, ,. and i obtained by concatenat-
ing the rows of x,. We will assume that the rightmost index in k
and m changes most rapidly, that each index is more significant
than the index to its right, and that the /th index counts modulo
M,. The exact order used to concatenate the N-dimensional
matrix into the vector is immaterial as long as a convention is set
and followed consistently, )

With the data represented in a column vector, the forward and
inverse transforms (5) and (6) can be symbolically accomplished
by matrix multiplication. The transform matrix (I") and the
inverse transform matrix (I'""!) will always be two-dimensional
matrices regardless of the number N. Thus

Y,=%(y,) =13, (9)

and

iﬂ =‘¢—1(Xn) =1’—\‘_1XAI'I

(10)
where % indicates Fourier transformation followed by concate-

nation. The transform and inverse transform matrices are

A

I'= Y] (11)
I =[] (12)
and the terms v,,, and y_! can be found directly by inspection of

(5) and (6):

P k ky
=exp — — e -
Yok P j my ‘]\41 My M\/

o 1 il i my B My
=—ex — et ky—|.
VYim M| p=mj 1]‘4-1 N

Using the chain rule

aY, aﬁ(aﬁ) aﬁ(aﬁai)

R [ [l g 13
ax, ap,\aX/), 9p \ax ok (13)

and noting that the forward and inverse transform matrices are
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constants, we have

ai}n af An 7S d An 2 2
(N i O (14)
9y, 9y, 93,
where I is the identity matrix. Similarly '
X, .
< =["1 15
X, (5)
If we define B [Bym]. g,,f’ ~*, the operation FB in (13) is

nothing more than the Fourier transform of B and the NFFT
can be used to efficiently accomplish the transform. We note that
a single column, ,é ,n» Of the two-dimensional matrix ﬁ is of the
same size as the data vector ¥,- So the premultiplication of Bm n
by I" in (13) corresponds exactly to the operation in (3), and the
same transform and data structure used for the circuit variables
can be used in determining the frequency-domain derivatives.
Thus (13) is accomplished for the mth frequency of X,, by use of
the transform operator

Y, [az,] 5
X, LoX|, (Bu).

where 3Y, /3X, , is an N-dimensional matrix from which the
elements of the Jacobian can be extracted. Again, the matrix 8, ,
(and thus Y, /90X, ,) is the same size as the data matrices x,,,
X,, y,and Y.

When Newton’s method is accomplished using strictly real
quantities, the following four quantities must be computed:

(16)

i = %:f(—m)—) (17)
T (1)
R 09
= T (20)

but the procedure (16) produces the quantity
RR,

‘g(Bm.n) o, n +Hjm n +J( .’m n +1ij n) (21)

and the individual components cannot be recovered. We form

“B....=Re(B, ) and ‘B, ,=Im(B, ) as
8, . =8 Re(IL,") (22)
and
B, =g, Im(I;"). (23)

Then following (16) we get

ﬁ(Rﬁm,n) '—RR. +‘]Iij n (24)
- F(Bun) =", ,,+Jnj,,. ] (25)

from which the needed derivatives are available.

V. DiscussioN AND CONCLUSION

Equations (24) and (25) can be efficiently implemented in a
circuit simulator since no matrix multiplications are required.
The operations in (22) and (23) are scalar multiplications. This
results from the fact that the nonlinear constitutive relations are
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algebraic (g, = 9y, /3%, is a diagonal two-dimensional matrix).
The y;,! are constants and need be computed only once per
simulation. However, the values of g, are dependent on the
nonlinear constitutive relations and so they change from iteration
to iteration. For each iteration they are computed once and are
then used in determining all the 8, , in B8,. The major operation
is the multidimensional Fourier transform, which is performed
once at each frequency of X,

The method presented for evaluating the Jacobian permits the
use of the efficient NFFT algorithm in conjunction with Newton’s
method for the harmonic balance analysis of nonlinear analog
circuits. This procedure has been implemented in FREDA, a
general nonlinear circuit simulator. The MESFET amplifier cir-
cuit of Chang et al. [4] was driven by two incommensurate input
signals, one at 0 dBm and the other at 5 dBm, and simulated
using 14 analysis frequencies. The time-domain element response
was oversampled [5] so that the transform contained 26 frequen-
cies. The solution was obtained in 1.1 s after 11 iterations using a
modified Simanskii method on a DEC DS 3100 workstation. The
equivalent simulation using a matrix multiplication based trans-
form (APDFT) required 3.8 s.

REFERENCES

A. Ushida and L. O. Chua, “Frequency-domain analysis of nonhnear
circuits driven by multi-tone signals,” /EEE Trans Circuits Syst, vol.
CAS-31, pp. 766-779, Sept 1984.

K. S. Kundert, G. B. Sorkin, and A. Sangiovanni-Vincentelli, “Applying
harmonic balance to almost-periodic circuits.” TEEE Trans. Microwave
Theory Tech., vol. 36, pp 366-377, Feb. 1988.

V. Ruizzoh, C Cecchetti, A. Lipparini, and F. Mastri, “General-purpose
harmonic balance analysis of nonlinear microwave circuits under multi-
tone excitation,” IEEE Trans Microwave Theory Tech , vol 36, pp
1650-1660, Dec. 1988.

C. R. Chang, M. B. Steer, and G W. Rhyne, “Frequency domain spectral
balance using the arithmetic operator method,” TEEE Trans. Microwave
Theory Tech., vol. 37, pp. 1681-1688, Nov. 1989

P. L. Heron, C. R. Chang, and M. B. Sieer, “Control of aliasing i the
harmonic balance simulation of nonlinear microwave circuits,” in JEEE
MTT-S Int. Microwave Symp. Dig., June 1989, pp. 355-358

1]
[2]

B3]

(4

[5]

Harmonic Balance and Frequency-Domain Simulation
of Nonlinear Microwave Circuits Using
the Block Newton Method

CHAO-REN CHANG, PATRICK L. HERON,
AND MICHAEL B. STEER, MEMBER, IEEE

Abstract — An efficient algorithm using block Newton and chord meth-
ods is presented for the iterative minimization of the spectral balance error
in the analysis of nonlinear microwave circuits. This algorithm is used in
the harmonic balance and frequency-domain spectral balance simulation of
a MESFET amplifier with single-tone and two-tone excitation.

I. INTRODUCTION

Methods of nonlinear microwave analog circuit analysis can be
classified by the nature of the linear and nonlinear subcircuit
calculations: time-domain methods, where all elements are ana-
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