
IEEE

[12]

[13]

TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 4, APRIL 1990 429

nonstationary electron dynamics,” J. App[. Ph.vs., VOI. 51, pp. 784-790,
1980
Y Xuan and C M Snowden, “A generalized approach to the design of

microwave crsclllators,” IEEE Truns, Mwrowave Theo<v Tech,, VOI

MTT-35, pp 1340-1347, 1987.

P. A. Blakey and R. K. Froelich, “On the transient analysis of circuits

contammg multiple diodes,” IEEE Tram Mlcrowaue Theory Tech., vol.

MT’P31, pp 781-783, 1983.

Jacobian Calculation Using the Multidimensional

Fast Fourier Transform in the Harmonic Balance
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Abstract — A technique is developed whereby the gradient of frequency-

domain simulation variables may be analytically determined using time-

domain derivative information and the multidimensional fast Fourier trans-

form. It is shown that this technique can be efficiently implemented when a

circuit is driven by any number of incommensurate input frequencies. A

harmonic balance simulator is constructed which uses this technique to

determine the entries of the Jacobian matrix which are needed in a

quasi-Newton iteration scheme. A significant reduction of simulation time

is observed when compared with a harmonic balance simulator that uses

matrix-multiplication-based transforms.

I. INTRODUCTION

In the harmonic balance method of nonlinear analog circuit

simulation, the linear subcircuit is analyzed in the frequency

domain and the nonlinear subcircuit in the time domain. For

simulations with multifrequency excitation, the time-domain and

frequency-domain analyses have been interfaced using either the

almost periodic discrete Fourier transform (APDFT) method [1],

[2] or the multidimensional fast Fourier transform (NFFT)

method [3]. The advantage of the APDFT is that computer

implementation is relatively simple for an arbitray number of

incommensurate input frequencies. On the other hand the NFFT

algorithm is computationally more efficient and exhibits superior

numerical stability. An alternative method to that used by Rizzoli

et al. [3] is presented here in which the Jacobian is calculated

using the NFFT. This method has the advantage that frequency-

domain derivatives may be computed for every frequency con-

tained in the transform. It can also be used in conjunction with

the block Newton iteration scheme [4].

II. HARMONIC BALANCE

Harmonic balance analysis proceeds by first selecting a set of

frequency-domain analysis variables at every edge/node which is

common to both the linear and nonlinear portions of the circuit.

The frequency-domain independent variable is X, and for

impedance (admittance) type elements X is a set of current

(voltage) phasors, while the dependent variable, Y, is a set of

voltage (current) phasors. Lowercase variables will be used to

indicate time-domain quantities.
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The independent and dependent variables at a single node or

edge will be denoted by the subscript n. Absence of this subscript

will indicate the collection of all i independent or dependent

variables in the simulation. For exiimple, X,, represents the

frequency-domain independent variable containing all analysis

frequencies at the nth node/edge, and y is the collection of the

time-domain dependent variables at eueiy node/edge and sample

time.

The objective of the harmonic balance procedure is to “ bal-

ance” the response of the nonlinear e [ements (Y) to that of the

linear elements (~). Defining the forward and inverse transform

operators as % and .%– 1 respectively, the “balance point” is

determined iteratively as follows. During each iteration and at

each analysis node/edge an updated estimate of X,, is inverse

Fourier transformed into the time domain,

x =@-’(xFl)n (1)

and applied as input to the constitutive relations of a nonlinear

element. This yields the time-domain response ( y,, ) for the

present iterate of the dependent variable:

Y,, =~(-L, ). (2)

This is then Fourier transformed to the frequency domain,

Z==( Y),) (3)

and compared with the response of the linear circuit to generate

the error function E, E = l\Ell where E = [E,,,,,]= [~,,,z – ~L,,, ];

the subscript k denotes the frequencies and n the edges/nodes of

elements EL,. of the matrix E.

The error function is minimized by iteratively selecting better

estimates for all independent variables. Generally, methods using

first derivative information, known as quasi-Newton methods,

are preferred. For each iteration the updated version of all

independent variables is calculated using

‘+ ’x= ’X–(’J-’)(’E) (4)

where the leading superscript is the iteration index and ‘J=

‘( i2E/ilX) is the Jacobian matrix or an approximation to the

Jacobian matrix.

III. NFFT

The harmonic balance algorithm can be generalized to signals

having N incommensurate input frequencies by using a multidi-

mensional Fourier transform. The operations in (1) and (3) then

become

x ~,tz=& :g; :;: ““” :-;%tr
12

(2T k, k, kN
exp- —~m~+—m2+””. +—m,v

)

(5)
J 1 ‘2 MN

and

Ml–l M2–1 MN–l

.4,,,= E z ““” zoYnt,),Y
ml= Onzl=O

.exp 2 jv
(

$kl+:; k2 +... +$kN

)

(6)
1 2 N

where Ik-f = II N1M, [ and the subscripts k and m are multi-

indices which represent [klkz . . kN ] and [ml mz . . . mN ] respec-
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tively. The operations in (5) and (6) are most efficiently im-

plemented using an NFFT. In this algorithm, the complex

frequency-domain coefficients, Xk,,, and Yk,,,, maybe thought of

as belonging to an N-dimensional frequency space (elements of

an N-dimensional matrix). Each dimension in this space corre-

sponds to a particular input frequency. The frequency-domain

coefficient indexed by k corresponds to the amplitude of a

phasor having frequency u~ = QI kl + . . . + UN kN. The phase

factors 27rm, k, /M, come from the product u~,q,,,, where UA, =

u, k, and the discrete evaluation times are r., = 2 mm, /q. To

satisfy the Nyquist sampling criterion we let’ the k, th index

reference frequencies up to the (M, /2 – l)th harmonic of U,

(coefficients for negative, Nyquist, and dc frequencies account

for the other M, /2 + 1 terms). Similarly the time-domain coeffi-

cients x~ and y,, can be viewed as elements of a multidimen-

sional sample matrix and the phase associated with harmonics of

the u, th input frequency varying as we traverse the matrix along

the i th dimension (i.e., as the index m, increases the phase

associated with the O,th frequency advances).

We thus have a multidimensional time space and the signals y,,

and x,, cannot be related to any real physicaf signal. The time-

domain constitutive relationships of nonlinear elements are con-

strained to be algebraic, i.e., have no memory, due to the absence

of an identifiable sequence of time samples. This is not a restric-

tion, as Newton-based harmonic balance simulators generally

require that constitutive relations be algebraic. Nonlinear induc-

tors, capacitors, and other elements having constitutive relations

involving derivatives with respect to time are handled through

multiplication by an appropriate power of jco in the frequency

domain.

In the remainder of this paper we shall consider the data to be

arranged in matrices. An example of the notation which will be

used is

[1

‘Y,r ~ _JYfl

axn,,,, ax ,,”

The left side of the equation states that we are taking the partial

derivative of the matrix of the time-domain dependent variable

(y) at all sample instants with respect to the dependent variable

at one particular sample instant (x~ ). Here boldface type and the

absence of a subscript indicate a vector or matrix quantity with

the index varying throughout the range of the (suppressed) sub-

script. Lightface type and the presence of a subscript indicate

that we are selecting one particular scalar vrdue. When differenti-

ation is performed, the node index n indicates that we are

performing this operation at one particular node/edge of the

dependent variable and one particular node/edge of the indepen-

dent variable. The node/edge in each case may be different but

we will use the same n in each case to avoid additional complex-

ity. On the’ right side of the previous equation, the square

brackets indicate a matrix, each element of which is indicated by

the enclosed quantity. In this example, matrix elements are

indexed by the subscript p and derivatives are taken with respect

to the independent variable at a single sample instant. When

subscripts are present inside the brackets they are free to vary

over their r~nge: absence of a subscript indicates a single fixed

element. Note that the subscript convention for variables outside

brackets is the opposite to that used for matrix elements.

IV. JACOBIAN CALCULATION

The harmonic balance procedure requires determination of the

frequency-domain derivatives ~ Y/~X. These can be calculated

from the time-domain derivatives

g=’g.I=[%I=lWl} (7)
which are available from the nonlinear device time-domain con-

stitutive relations. We may express (7) as

&= [tm%n],, (8)

where 8PM is the Kronecker delta. A consequence of algebraic

time-domain constitutive relationships is that an element gr,fl = O

if p # m. Here we develop a procedure for calculating the fre-

quency-domain derivatives from the time-domain derivatives

when an NFFT is used to accomplish transformation. Difficulties

arise because of the multi&mensionaf nature of the data and the

fact that the transform is accomplished by a linear operator

rather than through multiplication by a matrix.

From (6) we see that each frequency-domain coefficient Y~,,, is

a function of all time-domain samples, the ym, ,,’s. Similarly, from

(5), we see that each time-domain sample XH,,, is a function of all

frequency domain coefficients, the XA,,, ‘s. This indicates that the

transform should operate on the coefficients as if they were a

vector rather than an N-dimensional matrix (as implied by the

multiple indices). Thus the collection of all frequency-domain or

time-domain coefficients will be treated here as a vector. This will

be indicated by a hat (A) above the frequency- or time-domain

coefficient. For example, 2,, represents a vector containing all the

instantaneous coefficients, x~ ,,, and is obtained by concatenat-

ing the rows of x,,. We will assume that the rightmost index in k

and m changes most rapidly, that each index is more significant

than the index to its right, and that the i th index counts modulo

M,. The exact order used to concatenate the N-dimensional

matrix into the vector is immaterial as long as a convention is set

and followed consistently.

With the data represented in a column vector, the forward and

inverse transforms (5) and (6) can be symbolically ac~omplished

by matrix multiplication. The transform matrix (r) and the

inverse transform matrix (~- 1) will always be two-dimensionaf

matrices regardless of the number N. Thus

and

(9)

(lo)

where % indicates Fourier transformation followed by concate-

nation. The transform and inverse transform matrices are

‘= [Ymk] (11)

f-l=[yil]
m (12)

and the terms ymk and yk–~lcau be found directly by inspection of

(5) and (6):

[

2V kl k,v
yn,~=exp~ mlZ+...+m~r

1 ,V 11
[

m, ‘N

y~~=jzjexp2=J“~+” ””+k”~ 1
Using the chain rule

and noting that the forward and inverse transform matrices are
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constants, we have

a~, afyl ‘
—=—
aj,, a~tt

=T~=fI=f (14)

where Z is the identity matrix. Similarly

a%n
__=~-l.

ax,,
(15)

If we define & = [~P~ ]. = &~- 1, the operation ~~ in (13) is

nothing more than the Fourier transform of & and the NFFT

can be used to efficiently accomplish the transform. We note that

a single column, &~, of the two-dimensional matrix ~~ is of the

same size as the data vector $.. So the premultiplication of $~, ~

by ~ in (13) corresponds exactly to the operation in (3), and the

same transform and data structure used for the circuit variables

can be used in determining the frequency-domain derivatives.

Thus (13) is accomplished for the m th frequency of X. by use of

the transform operator

(16)

where 8 Y. /6’ XM,. is an N-dimensional matrix from which the

elements of the Jacobian can be extracted. Again, the matrix ~m, ~

(and thus 8 ~ /8Xm, ~) is the same size as the data matrices x.,

X., y., and Y..

When Newton’s method is accomplished using strictly real

quantities, the following four quantities must be computed:

RR.
8Re(~, )

J,,,,,, =
~Re(Lt,,)

RI.
dRe(~,)

‘“’’” = 81m(x~, fl)

IR. _
dIm(~)

‘m’”- 8Re(X~,,l)

11.
i31m(~)

‘n’””= 6’1m(X~, H)

(17)

(18)

(19)

(20)

but the procedure (16) produces the quantity

“(R1j~,n +’~m,n) (21)‘( flirt,,,) ‘R!ifn,,z ‘bin, n ‘J

and the individual components cannot be recovered. We form

‘/?~,,, = Re(@~,,,) and ‘~~,,, = Im(@~,H) as

$m,,, =g.Re(Kl) (22)

and

lm,,, =g,l Im(Kl). (23)

Then following (16) we get

s(RBm,,,) =RY +l!im ??m,n (24)

&(l/3~,,,) =R}~,,, + jl~~,H (25)

from which the needed derivatives are available.

V. DISCUSSION AND CONCLUSION

Equations (24) and (25) can be efficiently implemented in a

circuit simulator since no matrix multiplications are required.

The operations in (22) and (23) are scalar multiplications. This

results from the fact that the nonlinear constitutive relations are

algebraic (f,, = 8J,I /6’?,, is a diagonal two-dimensional matrix).

The y;; are constants and need be computed only once per

simulation. However, the values of g. are dependent on the

nonlinear constitutive relations and SCJthey change from iteration

to iteration. For each iteration they are computed once and are

then used in determining Al the &, ~ in ~~. The major operation

is the multidimensional Fourier transform, which is performed

once at each frequency of X,,.

The method presented for evaluating the Jacobian permits the

use of the efficient NFFT algorithm in conjunction with Newton’s

method for the harmonic balance analysis of nonlinear analog

circuits. This procedure has been implemented in FREDA, a

general nonlinear circuit simulator. The MESFET amplifier cir-

cuit of Chang et al. [4] was driven by two incommensurate input

signals, one at O dBm and the other at 5 dBm, and simulated

using 14 analysis frequencies. The time-domain element response

was oversampled [5] so that the transform cent ained 26 frequen-

cies. The solution was obtained in 1.1 s after 11 iterations using a

modified S“aanskii method on a DEC DS 3100 workstation. The

equivalent simulation using a matrix multiplication based trans-

form (APDFT) required 3.8 s.
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Harmonic Balance and Frequency-Domain Simulation

of Nonlinear Microwave Circuits Using

the Block Newton Method

CHAO-REN CHANG, PATRICK L. HERON,

AND MICHAEL B. STEER, MEMBER,IEEE

AfHtract —An efficient afgonthm using block Newton and chord meth-

ods is presented for the iterative minimization of the spectral balance error

in the analysis of nonlinear microwave circuits. This algorithm is used in

the harmonic balance and frequency-domain, spectral balance simulation of

a MESFET amplifier with single-tone and lwo-tone excitation.

1. INTRODUCTION

Methods of nonlinear microwave analog circuit analysis cau be

classified by the nature of the linear and nonlinear subcircuit

calculations: time-domain methods, where all elements are ana-
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